research

Fundamental limits of quantum-secure covert optical sensing

Abstract

We present a square root law for active sensing of phase θ\theta of a single pixel using optical probes that pass through a single-mode lossy thermal-noise bosonic channel. Specifically, we show that, when the sensor uses an nn-mode covert optical probe, the mean squared error (MSE) of the resulting estimator θ^n\hat{\theta}_n scales as (θθ^n)2=O(1/n)\langle (\theta-\hat{\theta}_n)^2\rangle=\mathcal{O}(1/\sqrt{n}); improving the scaling necessarily leads to detection by the adversary with high probability. We fully characterize this limit and show that it is achievable using laser light illumination and a heterodyne receiver, even when the adversary captures every photon that does not return to the sensor and performs arbitrarily complex measurement as permitted by the laws of quantum mechanics.Comment: 13 pages, 1 figure, submitted to ISIT 201

    Similar works

    Full text

    thumbnail-image

    Available Versions