research

Superconductivity and Dirac Fermions in 112-phase Pnictides

Abstract

This article reviews the status of current research on the 112-phase of pnictides. The 112-phase has gained augmented attention due to the recent discovery of high-temperature superconductivity in \cl with a maximum critical temperature \tc\sim 47\,K upon Sb substitution. The structural, magnetic, and electronic properties of \cl bear some similarities with other superconducting pnictide phases, however, the different valence states of the pnictogen and the presence of a metallic spacer layer are unique features of the 112-system. Low-temperature superconductivity which coexists with antiferromagnetic order was observed in transition metal (Ni, Pd) deficient 112-compounds like \cn, \lpb, \lps, \lns. Besides superconductivity, the presence of naturally occurring anisotropic Dirac Fermionic states were observed in the layered 112-compounds \smb, \cmb, \lab which are of significant interest for future nanoelectronics as an alternative to graphene. In these compounds, the linear energy dispersion resulted in a high magnetoresistance that stayed unsaturated even at the highest applied magnetic fields. Here, we describe various 112-type materials systems combining experimental results and theoretical predictions to stimulate further research on this less well-known member of the pnictide family.Comment: 18 pages, 20 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions