research

Nonradial entire solutions for Liouville systems

Abstract

We consider the following system of Liouville equations: {Δu1=2eu1+μeu2in R2Δu2=μeu1+2eu2in R2R2eu1<+,R2eu2<+\left\{\begin{array}{ll}-\Delta u_1=2e^{u_1}+\mu e^{u_2}&\text{in }\mathbb R^2\\-\Delta u_2=\mu e^{u_1}+2e^{u_2}&\text{in }\mathbb R^2\\\int_{\mathbb R^2}e^{u_1}<+\infty,\int_{\mathbb R^2}e^{u_2}<+\infty\end{array}\right. We show existence of at least n[n3]n-\left[\frac{n}3\right] global branches of nonradial solutions bifurcating from u1(x)=u2(x)=U(x)=log64(2+μ)(8+x2)2u_1(x)=u_2(x)=U(x)=\log\frac{64}{(2+\mu)\left(8+|x|^2\right)^2} at the values μ=2n2+n2n2+n+2\mu=-2\frac{n^2+n-2}{n^2+n+2} for any nNn\in\mathbb N.Comment: 18 pages, accepted on Journal of Differential Equation

    Similar works