Development of engineered nanoparticles for biomedical and industrial applications.

Abstract

In this work four nanoparticle systems were designed: two for medical and two for industrial applications. The purpose of the first part of my study concerns the manufacture of a NPs-enzyme system for cancer therapy: Fe3O4 NPs@APTES-DAAO. This system combine the magnetic properties of iron oxide nanoparticles (Fe3O4 NPs) with the ROS generating enzyme D-amino acid oxidase (DAAO) in order to efficiently direct the enzyme into the tumor and kill tumor cells. The second medical system designed consists in magnetic iron oxide nanoparticles conjugated with the antibiotics teicoplanin. Similar to the previous system, Fe3O4 NPs@Teicoplanin wants to takes advantage of the magnetic character of NPs for a specific targeting of the antibiotic. The two systems for industrial application were composed of Fe3O4 NPs conjugated to a cephalosporin C acylase (VAC) and a L-aspartate oxidase (LASPO) respectively. In industrial enzymatic application processes, immobilization of enzymes can offer several advantages, including the ability to be used repeatedly, improvement of enzyme stability and broadening the optimum pH range of enzyme. The first system Fe3O4 NPs@APTES-VAC allows the one-step conversion of cephalosporin C in 7-aminocephalosporanic acid, which is the precursor of in semisynthetic cephalosporins antibiotics. The second system Fe3O4 NPs@APTES-LASPO allows the resolution of a racemic mixture of D, L-aspartate

    Similar works