research

A Spectral Gap Estimate and Applications

Abstract

We consider the Schr\"odinger operator -\frac{d^2}{d x^2} + V \qquad \mbox{on an interval}~~[a,b]~\mbox{with Dirichlet boundary conditions}, where VV is bounded from below and prove a lower bound on the first eigenvalue λ1\lambda_1 in terms of sublevel estimates: if wV(y)=Iy, where Iy:={x[a,b]:V(x)y}, w_V(y) = |I_y|,\text{ where } I_y := \left\{ x \in [a,b]: V(x) \leq y \right\}, then λ11250miny>minV(1wV(y)2+y). \lambda_1 \geq \frac{1}{250} \min_{y > \min V}{\left(\frac{1}{w_V(y)^2} + y\right)}. The result is sharp up to a universal constant if {x[a,b]:V(x)y}\left\{ x \in [a,b]: V(x) \leq y \right\} is an interval for the value of yy solving the minimization problem. An immediate application is as follows: let ΩR2\Omega \subset \mathbb{R}^2 be a convex domain with inradius ρ\rho and diameter DD and let u:ΩRu:\Omega \rightarrow \mathbb{R} be the first eigenfunction of the Laplacian Δ-\Delta on Ω\Omega with Dirichlet boundary conditions on Ω\partial \Omega. We prove uL1ρ(ρD)1/6uL2, \| u \|_{L^{\infty}} \lesssim \frac{1}{\rho^{}} \left( \frac{\rho}{D} \right)^{1/6} \|u\|_{L^2}, which answers a question of van den Berg in the special case of two dimensions

    Similar works