We prove existence and stability of solutions for a model of angiogenesis set
in an annular region. Branching, anastomosis and extension of blood vessel tips
are described by an integrodifferential kinetic equation of Fokker-Planck type
supplemented with nonlocal boundary conditions and coupled to a diffusion
problem with Neumann boundary conditions through the force field created by the
tumor induced angiogenic factor and the flux of vessel tips. Our technique
exploits balance equations, estimates of velocity decay and compactness results
for kinetic operators, combined with gradient estimates of heat kernels for
Neumann problems in non convex domains.Comment: to appear in Applied Mathematical Modellin