A ferromagnetic quantum critical point is thought not to exist in two and
three-dimensional metallic systems yet is realized in the Kondo lattice
compound YbNi4(P,As)2, possibly due to its one-dimensionality. It is crucial to
investigate the dimensionality of the Fermi surface of YbNi4P2 experimentally
but common probes such as ARPES and quantum oscillation measurements are
lacking. Here, we studied the magnetic field dependence of transport and
thermodynamic properties of YbNi4P2. The Kondo effect is continuously
suppressed and additionally we identify nine Lifshitz transitions between 0.4
and 18 T. We analyze the transport coefficients in detail and identify the type
of Lifshitz transitions as neck or void type to gain information on the Fermi
surface of YbNi4P2. The large number of Lifshitz transitions observed within
this small energy window is unprecedented and results from the particular flat
renormalized band structure with strong 4f-electron character shaped by the
Kondo lattice effect.Comment: 6 pages, 4 figure