research

Randomized algorithms for distributed computation of principal component analysis and singular value decomposition

Abstract

Randomized algorithms provide solutions to two ubiquitous problems: (1) the distributed calculation of a principal component analysis or singular value decomposition of a highly rectangular matrix, and (2) the distributed calculation of a low-rank approximation (in the form of a singular value decomposition) to an arbitrary matrix. Carefully honed algorithms yield results that are uniformly superior to those of the stock, deterministic implementations in Spark (the popular platform for distributed computation); in particular, whereas the stock software will without warning return left singular vectors that are far from numerically orthonormal, a significantly burnished randomized implementation generates left singular vectors that are numerically orthonormal to nearly the machine precision.Comment: 21 pages, 29 tables, 1 figure, 8 algorithms in pseudocod

    Similar works

    Full text

    thumbnail-image

    Available Versions