research

Improved Algorithms for Decremental Single-Source Reachability on Directed Graphs

Abstract

Recently we presented the first algorithm for maintaining the set of nodes reachable from a source node in a directed graph that is modified by edge deletions with o(mn)o(mn) total update time, where mm is the number of edges and nn is the number of nodes in the graph [Henzinger et al. STOC 2014]. The algorithm is a combination of several different algorithms, each for a different mm vs. nn trade-off. For the case of m=Θ(n1.5)m = \Theta(n^{1.5}) the running time is O(n2.47)O(n^{2.47}), just barely below mn=Θ(n2.5)mn = \Theta(n^{2.5}). In this paper we simplify the previous algorithm using new algorithmic ideas and achieve an improved running time of O~(min(m7/6n2/3,m3/4n5/4+o(1),m2/3n4/3+o(1)+m3/7n12/7+o(1)))\tilde O(\min(m^{7/6} n^{2/3}, m^{3/4} n^{5/4 + o(1)}, m^{2/3} n^{4/3+o(1)} + m^{3/7} n^{12/7+o(1)})). This gives, e.g., O(n2.36)O(n^{2.36}) for the notorious case m=Θ(n1.5)m = \Theta(n^{1.5}). We obtain the same upper bounds for the problem of maintaining the strongly connected components of a directed graph undergoing edge deletions. Our algorithms are correct with high probabililty against an oblivious adversary.Comment: This paper was presented at the International Colloquium on Automata, Languages and Programming (ICALP) 2015. A full version combining the findings of this paper and its predecessor [Henzinger et al. STOC 2014] is available at arXiv:1504.0795

    Similar works

    Full text

    thumbnail-image

    Available Versions