Automatic matching of job offers and job candidates is a major problem for a
number of organizations and job applicants that if it were successfully
addressed could have a positive impact in many countries around the world. In
this context, it is widely accepted that semi-automatic matching algorithms
between job and candidate profiles would provide a vital technology for making
the recruitment processes faster, more accurate and transparent. In this work,
we present our research towards achieving a realistic matching approach for
satisfactorily addressing this challenge. This novel approach relies on a
matching learning solution aiming to learn from past solved cases in order to
accurately predict the results in new situations. An empirical study shows us
that our approach is able to beat solutions with no learning capabilities by a
wide margin.Comment: 15 pages, 6 figure