research

Roth’s solvability criteria for the matrix equations AX - XB^ = C and X - AXB^ = C over the skew field of quaternions with aninvolutive automorphism q ¿ qˆ

Abstract

The matrix equation AX-XB = C has a solution if and only if the matrices A C 0 B and A 0 0 B are similar. This criterion was proved over a field by W.E. Roth (1952) and over the skew field of quaternions by Huang Liping (1996). H.K. Wimmer (1988) proved that the matrix equation X - AXB = C over a field has a solution if and only if the matrices A C 0 I and I 0 0 B are simultaneously equivalent to A 0 0 I and I 0 0 B . We extend these criteria to the matrix equations AX- ^ XB = C and X - A ^ XB = C over the skew field of quaternions with a fixed involutive automorphism q ¿ ˆq.Postprint (author's final draft

    Similar works