We demonstrate how quantum interference may lead to the appearance of robust
edge-like states of a single ultracold atom in a two-dimensional optical
ribbon. We show that these states can be engineered either within the manifold
of local ground states of the sites forming the ribbon, or of states carrying
one unit of angular momentum. In the former case, we show that the
implementation of edge-like states can be extended to other geometries, such as
tilted square lattices. In the latter case, we suggest to use the winding
number associated to the angular momentum as a synthetic dimension.Comment: 5 pages, 5 figure