Microelectrode arrays of diamond-insulated graphitic channels for real
time detection of exocytotic events from cultured chromaffin cells and slices
of adrenal glands
A microstructured graphitic 4x4 multielectrode array was embedded in a single
crystal diamond substrate (4x4 {uG-SCD MEA) for real-time monitoring of
exocytotic events from cultured chromaffin cells and adrenal slices. The
current approach relies on the development of a parallel ion beam lithographic
technique, which assures the time effective fabrication of extended arrays with
reproducible electrode dimensions. The reported device is suitable for
performing amperometric and voltammetric recordings with high sensitivity and
temporal resolution, by simultaneously acquiring data from 16 rectangularly
shaped microelectrodes (20x3.5 um^2) separated by 200 um gaps. Taking advantage
of the array geometry we addressed the following specific issues: i) detect
both the spontaneous and KCl-evoked secretion simultaneously from several
chromaffin cells directly cultured on the device surface, ii) resolve the
waveform of different subsets of exocytotic events, iii) monitoring quantal
secretory events from thin slices of the adrenal gland. The frequency of
spontaneous release was low (0.12 Hz and 0.3 Hz respectively for adrenal slices
and cultured cells) and increased up to 0.9 Hz after stimulation with 30 mM KCl
in cultured cells. The spike amplitude as well as rise and decay time were
comparable with those measured by carbon fiber microelectrodes and allowed to
identify three different subsets of secretory events associated to "full
fusion" events, "kiss and-run" and "kiss-and-stay" exocytosis, confirming that
the device has adequate sensitivity and time resolution for real-time
recordings. The device offers the significant advantage of shortening the time
to collect data by allowing simultaneous recordings from cell populations
either in primary cell cultures or in intact tissues