In risk analysis, a global fit that appropriately captures the body and the
tail of the distribution of losses is essential. Modelling the whole range of
the losses using a standard distribution is usually very hard and often
impossible due to the specific characteristics of the body and the tail of the
loss distribution. A possible solution is to combine two distributions in a
splicing model: a light-tailed distribution for the body which covers light and
moderate losses, and a heavy-tailed distribution for the tail to capture large
losses. We propose a splicing model with a mixed Erlang (ME) distribution for
the body and a Pareto distribution for the tail. This combines the flexibility
of the ME distribution with the ability of the Pareto distribution to model
extreme values. We extend our splicing approach for censored and/or truncated
data. Relevant examples of such data can be found in financial risk analysis.
We illustrate the flexibility of this splicing model using practical examples
from risk measurement