The rapid interaction of highly energetic particle beams with matter induces
dynamic responses in the impacted component. If the beam pulse is sufficiently
intense, extreme conditions can be reached, such as very high pressures,
changes of material density, phase transitions, intense stress waves, material
fragmentation and explosions. Even at lower intensities and longer time-scales,
significant effects may be induced, such as vibrations, large oscillations, and
permanent deformation of the impacted components. These lectures provide an
introduction to the mechanisms that govern the thermomechanical phenomena
induced by the interaction between particle beams and solids and to the
analytical and numerical methods that are available for assessing the response
of impacted components. An overview of the design principles of such devices is
also provided, along with descriptions of material selection guidelines and the
experimental tests that are required to validate materials and components
exposed to interactions with energetic particle beams.Comment: 69 pages, contribution to the 2014 Joint International Accelerator
School: Beam Loss and Accelerator Protection, Newport Beach, CA, USA , 5-14
Nov 201