During self-motion, the world normally appears stationary. In part, this may be due to reductions in visual motion signals during self-motion. In 8 experiments, the authors used magnitude estimation to characterize changes in visual speed perception as a result of biomechanical self-motion alone (treadmill walking), physical translation alone (passive transport), and both biomechanical self-motion and physical translation together (walking). Their results show that each factor alone produces subtractive reductions in visual speed but that subtraction is greatest with both factors together, approximating the sum of the 2 separately. The similarity of results for biomechanical and passive self-motion support H. B. Barlow\u27s (1990) inhibition theory of sensory correlation as a mechanism for implementing H. Wallach\u27s (1987) compensation for self-motion. (PsycINFO Database Record (c) 2013 APA, all rights reserved)(journal abstract