A Roman domination function on a complementary prism graph GGc is a function f : V [ V c ! {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination number R(GGc) of a graph G = (V,E) is the minimum of Px2V [V c f(x) over such functions, where the complementary prism GGc of G is graph obtained from disjoint union of G and its complement Gc by adding edges of a perfect matching between corresponding vertices of G and Gc. In this paper, we have investigated few properties of R(GGc) and its relation with other parameters are obtaine