Heterologous production of human papillomavirus type-16 L1 protein by a lactic acid bacterium

Abstract

<p>Abstract</p> <p>Background</p> <p>The expression of vaccine antigens in lactic acid bacteria (LAB) is a safe and cost-effective alternative to traditional expression systems. In this study, we investigated i) the expression of Human papillomavirus type 16 (HPV-16) L1 major capsid protein in the model LAB <it>Lactococcus lactis </it>and ii) the ability of the resulting recombinant strain to produce either capsomer-or virus-like particles (VLPs).</p> <p>Results and conclusion</p> <p>HPV-16 L1 gene was cloned into two vectors, pCYT and pSEC, designed for controlled intra- or extracellular heterologous expression in <it>L. lactis</it>, respectively. The capacity of <it>L. lactis </it>harboring either pCYT:L1 or pSEC:L1 plasmid to accumulate L1 in the cytoplasm and supernatant samples was confirmed by Western blot assays. Electron microscopy analysis suggests that, L1 protein produced by recombinant lactococci can self-assemble into structures morphologically similar to VLPs intracellularly. The presence of conformational epitopes on the <it>L. lactis</it>-derived VLPs was confirmed by ELISA using an anti-HPV16 L1 capsid antigen antibody. Our results support the feasibility of using recombinant food-grade LAB, such as <it>L. lactis</it>, for the production of L1-based VLPs and open the possibility for the development of a new safe mucosal vector for HPV-16 prophylactic vaccination.</p

    Similar works