research

A Gaussian Process Approach for Extended Object Tracking with Random Shapes and for Dealing with Intractable Likelihoods

Abstract

Tracking of arbitrarily shaped extended objects is a complex task due to the intractable analytical expression of measurement to object associations. The presence of sensor noise and clutter worsens the situation. Although a significant work has been done on the extended object tracking (EOT) problems, most of the developed methods are restricted by assumptions on the shape of the object such as stick, circle, or other axis-symmetric properties etc. This paper proposes a novel Gaussian process approach for tracking an extended object using a convolution particle filter (CPF). The new approach is shown to track irregularly shaped objects efficiently in presence of measurement noise and clutter. The mean recall and precision values for the shape, calculated by the proposed method on simulated data are around 0.9, respectively, by using 1000 particles

    Similar works