Systemic States of Spreading Activation in Describing Associative Knowledge Networks: From Key Items to Relative Entropy Based Comparisons

Abstract

Associative knowledge networks are central in many areas of learning and teaching. One key problem in evaluating and exploring such networks is to find out its key items (nodes), sub-structures (connected set of nodes), and how the roles of sub-structures can be compared. In this study, we suggest an approach for analyzing associative networks, so that analysis is based on spreading activation and systemic states that correpond to the state of spreading. The method is based on the construction of diffusion-propagators as generalized systemic states of the network, for an exploration of the connectivity of a network and, subsequently, on generalized Jensen–Shannon–Tsallis relative entropy (based on Tsallis-entropy) in order to compare the states. It is shown that the constructed systemic states provide a robust way to compare roles of sub-networks in spreading activation. The viability of the method is demonstrated by applying it to recently published network representations of students’ associative knowledge regarding the history of science

    Similar works