Influence of the dual ABCB1 and ABCG2 inhibitor tariquidar on the disposition of oral imatinib in mice

Abstract

<p>Abstract</p> <p>Background</p> <p>Imatinib, a tyrosine kinase inhibitor currently approved for treatment of several malignancies, has been shown to be a substrate for multiple efflux-transporter proteins, including ABCB1 (P-glycoprotein) and ABCG2 (BCRP). The effect of inhibiting these transporters on tissue exposure to imatinib remains unclear.</p> <p>Objective</p> <p>To assess the role of these transporters on drug disposition, 50 mg/kg imatinib was administered to Balb/C mice, 30 minutes after receiving tariquidar (10 mg/kg), an inhibitor of both ABCB1 and ABCG2, or vehicle, via oral gavage.</p> <p>Methods</p> <p>Quantitative determination of imatinib in mouse plasma, liver and brain was performed using a newly-developed and validated liquid-chromatography-mass spectrometric method. Results: Exposure to imatinib was 2.2-fold higher in plasma, liver and brain in mice that received tariquidar, as compared to those that received the vehicle (P = 0.001). The peak plasma concentration did not increase substantially, suggesting that tariquidar is affecting the distribution, metabolism and/or excretion of imatinib, rather than absorption. Though tariquidar increased the absolute exposure of imatinib, the brain-to-plasma ratio of imatinib was unaffected.</p> <p>Conclusion</p> <p>This study suggests that intentional inhibition of ABCB1 and ABCG2 function at the blood-brain barrier is unlikely to significantly improve clinical outcome of imatinib with currently used dosing regimens.</p

    Similar works