Clastogenic Factors as Potential Biomarkers of Increased Superoxide Production

Abstract

The formation of clastogenic factors (CF) and their damaging effects are mediated by superoxide, since superoxide dismutase is regularly protective. CF are produced via superoxide and stimulate the production of superoxide by monocytes and neutrophils. This results in a selfsustaining and longlasting process of clastogenesis, which may exceed the DNA repair system and ultimately lead to cancer (Emerit, 1994). An increased cancer risk is indeed observed in conditions accompanied by CF formation. These include irradiated persons, patients with chronic inflammatory diseases, HIV-infected persons and the chromosomal breakage syndromes ataxia telangiectasia, Bloom’s syndrome and Fanconi’s anemia. Biochemical analysis has identified lipid peroxidation products, arachidonic acid metabolites, nucleotides of inosine and cytokines, in particular tumor necrosis factor alpha, as the clastogenic and also superoxide stimulating components of CF. Due to their chromosome damaging effects, these oxidants can be detected with classical cytogenetic techniques. Their synergistic action renders the CF-test particularly sensitive for the detection of a pro-oxidant state. Correlations were observed between CF and other biomarkers of oxidative stress such as decreases in total plasma thiols or increases in TBARS or chemiluminescence. Correlations between CF and disease activity, between CF and radiation exposure, suggest the study of CF for monitoring these conditions. CF may also be useful as biochemical markers and intermediate endpoints for the evaluation of promising antioxidant drugs

    Similar works