Perturbation of Lytic and Latent Gammaherpesvirus Infection in the Absence of the Inhibitory Receptor CEACAM1

Abstract

Control of gammaherpesvirus infections requires a complex, well orchestrated immune response regulated by positive and negative co-signaling molecules. While the impact of co-stimulatory molecules has been addressed in various studies, the role of co-inhibitory receptors has not been tested. The ITIM-bearing CEACAM1 is an inhibitory receptor expressed by a variety of immune cells, including B, T and NK cells. Using Ceacam1−/− mice, we analyzed the in vivo function of CEACAM1 during acute and latent murine gammaherpesvirus 68 (MHV-68) infection. During acute lytic replication, we observed lower virus titers in the lungs of Ceacam1−/− mice than in WT mice. In contrast, during latency amplification, Ceacam1−/− mice displayed increased splenomegaly and a higher latent viral load in the spleen. Analysis of the immune response revealed increased virus-specific antibody levels in Ceacam1−/− mice, while the magnitude of the T cell-mediated antiviral immune response was reduced. These findings suggest that inhibitory receptors can modulate the efficacy of immune responses against gammaherpesvirus infections

    Similar works