research

Semantic Enrichment of a Multilingual Archive with Linked Open Data

Abstract

This paper introduces MERCKX, a Multilingual Entity/Resource Combiner & Knowledge eXtractor. A case study involving the semantic enrichment of a multilingual archive is presented with the aim of assessing the relevance of natural language processing techniques such as named-entity recognition and entity linking for cultural heritage material. In order to improve the indexing of historical collections, we map entities to the Linked Open Data cloud using a language-independent method. Our evaluation shows that MERCKX outperforms similar tools on the task of place disambiguation and linking, achieving over 80% precision despite lower recall scores. These results are encouraging for small and medium-size cultural institutions since they demonstrate that semantic enrichment can be achieved with limited resources.Peer reviewe

    Similar works