unknown

Vlasiator : From local to global magnetospheric hybrid-Vlasov simulations

Abstract

The Sun is the source of the solar wind, a continuous stream of electrically charged particles and magnetic fields pervading the Solar system. Its interaction with the magnetic field of the Earth, in and around the region called the magnetosphere, controls the flow of matter and energy in near-Earth space. A fundamental understanding of the physical processes at play is crucial for the building of forecasting and warning systems, as the influence of the solar wind during space storms can harm life and technology in space and on the ground. These effects, collectively known as space weather, are one of the biggest albeit least understood natural threats to society. The research effort needed includes the development of observational methods as well as theories and models, to first describe and later predict the mechanisms and consequences of space weather. This doctoral thesis, comprising an introduction and four peer-reviewed articles, presents the hybrid-Vlasov model Vlasiator developed at the Finnish Meteorological Institute. Based on a detailed description of proton physics in space plasmas, Vlasiator allows to simulate both local contexts and the Earth’s magnetosphere on global scales. This unprecedented capability is only accessible by harnessing the power of modern supercomputers. The aim of this work is threefold. The current version of Vlasiator is documented considering physical and computational aspects, the correctness of the simulations is demonstrated by comparing to analytical theories and spacecraft observations, and new scientific results gained with this model are presented

    Similar works