research

An integrated proteomic and metabolomic study on the gender-specific responses of mussels Mytilus galloprovincialis to tetrabromobisphenol A (TBBPA)

Abstract

Tetrabromobisphenol A (TBBPA), accounting for the largest production of brominated flame-retardants (BFRs) along the Laizhou Bay in China, is of great concern due to its diverse toxicities. In this study, we focused on the gender-specific responses of TBBPA in mussel Mytilus galloprovincialis using an integrated proteomic and metabolomic approach. After exposure of TBBPA (10 mu g L-1) for one month, a total of 9 metabolites and 67 proteins were altered in mussel gills from exposed group. The significant changes of metabolites in female mussel gills from exposed group exhibited the disturbances in energy metabolism and osmotic regulation, while in male samples only be found the variation of metabolites related to osmotic regulation. iTRAQ-based proteomic analysis showed biological differences between male and female mussel gills from solvent control group. The higher levels of proteins related to primary and energy metabolism and defense mechanisms in male mussel gills meant a greater anti-stress capability of male mussels. Further analysis revealed that TBBPA exposure affected multiple biological processes consisting of production and development, material and energy metabolism, signal transduction, gene expression, defense mechanisms and apoptosis in both male and female mussels with different mechanisms. Specially, the responsive proteins of TBBPA in male mussels signified higher tolerance limits than those in female individuals, which was consistent with the biological differences between male and female mussel gills from solvent control group. This work suggested that the gender differences should be considered in ecotoxicology. (C) 2015 Elsevier Ltd. All rights reserved

    Similar works