Both systemic and local application of Granulocyte-colony stimulating factor (G-CSF) is neuroprotective after retinal ganglion cell axotomy

Abstract

<p>Abstract</p> <p>Background</p> <p>The hematopoietic Granulocyte-Colony Stimulating Factor (G-CSF) plays a crucial role in controlling the number of neutrophil progenitor cells. Its function is mediated via the G-CSF receptor, which was recently found to be expressed also in the central nervous system. In addition, G-CSF provided neuroprotection in models of neuronal cell death. Here we used the retinal ganglion cell (RGC) axotomy model to compare effects of local and systemic application of neuroprotective molecules.</p> <p>Results</p> <p>We found that the <it>G-CSF receptor </it>is robustly expressed by RGCs <it>in vivo </it>and <it>in vitro</it>. We thus evaluated G-CSF as a neuroprotectant for RGCs and found a dose-dependent neuroprotective effect of G-CSF on axotomized RGCs when given subcutaneously. As stem stell mobilization had previously been discussed as a possible contributor to the neuroprotective effects of G-CSF, we compared the local treatment of RGCs by injection of G-CSF into the vitreous body with systemic delivery by subcutaneous application. Both routes of application reduced retinal ganglion cell death to a comparable extent. Moreover, G-CSF enhanced the survival of immunopurified RGCs <it>in vitro</it>.</p> <p>Conclusion</p> <p>We thus show that G-CSF neuroprotection is at least partially independent of potential systemic effects and provide further evidence that the clinically applicable G-CSF could become a treatment option for both neurodegenerative diseases and glaucoma.</p

    Similar works