BEAM-PROFILE INSTRUMENTATION FOR BEAM-HALO MEASUREMENT : OVERALL DESCRIPTION, OPERATION, AND BEAM DATA.

Abstract

The halo experiment presently being conducted at the Low Energy Demonstration Accelerator (LEDA) at Los Alamos National Laboratory (LANL) has specific instruments that acquire horizontally and vertically projected particle-density beam distributions out to greater than 10{sup 5}:1 dynamic range. They measure the core of the distributions using traditional wire scanners, and the tails of the distribution using water-cooled graphite scraping devices. The wire scanner and halo scrapers are mounted on the same moving frame whose location is controlled with stepper motors. A sequence within the Experimental Physics and Industrial Control System (EPICS) software communicates with a National Instrument LabVIEW virtual instrument to control the motion and location of the scanner/scraper assembly. Secondary electrons from the wire scanner 0.03-mm carbon wire and protons impinging on the scraper are both detected with a lossy-integrator electronic circuit. Algorithms implemented within EPICS and in Research Systems Interactive Data Langugage (IDL) subroutines analyse and plot the acquired distributions. This paper describes this beam profile instrument, describes their experience with its operation, compares acquired profile data with simulations, and discusses various beam profile phenomena specific to the halo experiment

    Similar works