3D Simulations of Secondary Electron Generation and Transport in a Diamond Electron Beam Amplifier

Abstract

The Relativistic Heavy Ion Collider (RHIC) contributes fundamental advances to nuclear physics by colliding a wide range of ions. A novel electron cooling section, which is a key component of the proposed luminosity upgrade for RHIC, requires the acceleration of high-charge electron bunches with low emittance and energy spread. A promising candidate for the electron source is the recently developed concept of a high quantum efficiency photoinjector with a diamond amplifier. To assist in the development of such an electron source, we have implemented algorithms within the VORPAL particle-in-cell framework for modeling secondary electron and hole generation, and for charge transport in diamond. The algorithms include elastic, phonon, and impurity scattering processes over a wide range of charge carrier energies. Results from simulations using the implemented capabilities will be presented and discussed

    Similar works