DENSITY-FUNCTIONAL MOLECULAR DYNAMICS SIMULATIONS OF SHOCKED MOLECULAR LIQUIDS

Abstract

Molecular dynamics (MD) simulations have been performed for highly compressed fluid deuterium, nitrogen, and oxygen, in the density and temperature regime of shock-compression experiments, using density functional (DF) electronic structure techniques to describe the interatomic forces. The Hugoniots derived from the calculated equation-of-state for deuterium does not exhibit the large compression predicted by the recently reported laser-driven experiments. However, the Hugoniot derived for nitrogen and oxygen agree well with explosively-driven and gas-gun experiments. The nature of the fluid along the Hugoniot, as calculated with DF-MD, has been analyzed. All three species (D2, N2, amd 02) undergo a continuous transition from a molecular to a partially dissociated fluid containing a mixture of atoms and molecules

    Similar works