Atomic-volume variations of (alpha)-Pu alloyed with Al, Ga, and Am from first-principles theory

Abstract

First-principles methods are employed to calculate the ground-state atomic densities (or volumes) of {alpha}-Pu alloyed with Al, Ga, and Am. Three configurations for the alloying atom are considered. (1) It is located at the most open and energetically most favorably site. (2) It is located in the least open site. (3) It is randomly distributed within the {alpha}-Pu matrix. When alloyed with Al or Ga, {alpha}-Pu behaves similarly, it expands considerably for configurations (2) and (3), while for (1) only small changes of the density occurs. Interestingly, for Am the alloying effects are quite different from that of Al and Ga. Small expansion is noted for the ordered configurations (1) and (2), whereas for the disordered (3), only insignificant changes of the density take place. The bonding character is thus differently influenced in Pu by the addition of Al and Ga on one hand and Am on the other. This is consistent with the view that Al and Ga stabilize the {delta} over the {alpha} phase in Pu by a different mechanism than Am, as has been discussed in recent publications

    Similar works