Design and Simulation of a Rotating Aperture & Vacuum System for Neutron Imaging

Abstract

The development of a high-energy (10Mev) neutron imaging system at Lawrence Livermore National Laboratory (LLNL) depends on a precision engineered rotating aperture and vacuum system for generating neutrons that are used for imaging dense objects. This subsystem is part of a larger system which includes a linear accelerator that creates a deuteron beam, a scintillator detector, imaging optics and a high resolution CCD camera. The rotating aperture vacuum system has been successfully simulated and tested. Results show the feasibility of the design and point toward ways to improve the design by minimizing the rotating aperture gap

    Similar works