Identification of external influences on temperatures in California

Abstract

We use eight different observational datasets to estimate California-average temperature trends over 1950-1999. Observed results are compared to trends from a suite of control simulations of natural internal climate variability. Observed increases in annual-mean surface temperature are distinguishable from climate noise in some but not all observational datasets. The most robust results are large positive trends in mean and maximum daily temperatures in late winter/early spring, as well as increases in minimum daily temperatures from January to September. These trends are inconsistent with model-based estimates of natural internal climate variability, and thus require one or more external forcing agents to be explained. Our results suggest that the warming of Californian winters over the second half of the twentieth century is associated with human-induced changes in large-scale atmospheric circulation. We also hypothesize that the lack of a detectable increase in summertime maximum temperature arises from a cooling associated with large-scale irrigation. This cooling may have, until now, counteracted the warming induced by increasing greenhouse gases and urbanization effects

    Similar works