HYBRID HETEROGENEOUS CATALYSTS FOR HYDROGENATION OF CARBON DIOXIDE

Abstract

HYBRID HETEROGENEOUS CATALYSTS FOR HYDROGENATION OF CARBON DIOXIDE Lucia M. Petkovic, Harry W. Rollins, Daniel M. Ginosar, and Kyle C. Burch Idaho National Laboratory P.O. Box 1625 Idaho Falls, ID 83415-2208 Introduction Anthropogenic emissions of carbon dioxide, a gas often associated with global warming, have increased considerably since the beginning of the industrial age.1 In the U.S., stationary CO2 sources, such as electricity generation plants, produce about one-third of the anthropogenic CO2 generation. Reports2 indicate that the power required to recover 90% of the CO2 from an integrated coal-fired power-plant is about 10% of the power-plant capacity. This energy requirement can be reduced to less than 1% if the recovered CO2 is applied to the production of synthetic fuels. However, the lack of efficient catalysts along with the costs of energy and hydrogen has prevented the development of technologies for direct hydrogenation of CO2.3 Although the cost of hydrogen for hydrogenating CO2 is not economically attractive at present, the future production of hydrogen by nuclear power sources could completely change this scenario.2 Still, an efficient catalyst will be essential for commercial application of those processes. The objective of the work presented here was the development of hybrid catalysts for one-step carbon dioxide hydrogenation to liquid fuels. The hybrid catalysts, which were prepared by two novel techniques, included a copper/zinc oxide catalytic function distributed within an acidic zeolitic matrix. Results of catalyst activity and selectivity studies at atmospheric pressure are presented in this contribution. Experimental Catalysts were prepared by two novel techniques and under several different conditions to produce copper/zinc oxide/zeolite materials. Once synthesized, samples were pelletized and the fraction between 40-60 mesh was utilized for the experiments. Two hundred milligrams of catalyst were loaded in a U-tube stainless steel reactor and a flow of 100 cm3/min of a 10:90 H2:Ar mixture was passed through the catalyst bed while the temperature was increased from room temperature to 513 K at 1.8 K/min and held at 513 K for 15 h. A reactant gas mixture composed by 10 cm3/min of CO2 and 30 cm3/min of H2 was then passed through the catalyst bed and the reaction products monitored by on-line gas chromatographic analyses using an SRI Multiple Gas Analyzer #2 equipped with 3 columns (MoleSieve 13X, Hayesep-D, and MXT-1) and 3 detectors (TCD, FID, and FID-methanizer). This GC system allowed for quantification of inert gases, CO, CO2, methanol, dimethylether, higher alcohols, water, and hydrocarbons up to C20. One hundred milligrams of a commercial syngas-to-methanol catalyst along with the same amount of a commercial zeolite catalyst was utilized under the same reaction conditions for comparison purposes. These catalysts were utilized either in two-layers (Com1) or mixed together (Com2). Results and Discussion Under the conditions applied in this study, the main reaction products were CO, CH3OH, CH3OCH3, and H2O. Methanol and dimethylether production rates and selectivities with respect to CO formation are presented in Figures 1 and 2, respectively. Although the activity of the synthesized catalysts did not surpass the commercial catalysts, the selectivity to oxygenates with respect to CO on most of the synthesized catalysts were better than on the commercial catalysts. For example, ca

    Similar works