Characterization of a Tunable Quasi-Monoenergetic Neutron Beamfrom Deuteron Breakup

Abstract

A neutron irradiation facility is being developed at the88-Inch Cyclotron at Lawrence Berkeley National Laboratory for thepurposes of measuring neutron reaction cross sections on radioactivetargets and for radiation effects testing. Applications are of benefit tostockpile stewardship, nuclear astrophysics, next generation advancedfuel reactors, and cosmic radiation biology and electronics in space. Thefacility will supply a tunable, quasi-monoenergetic neutron beam in therange of 10-30 MeV or a white neutron source, produced by deuteronbreakup reactions on thin and thick targets, respectively. Because thedeuteron breakup reaction has not been well studied at intermediateincident deuteron energies, above the target Coulomb barrier and below 56MeV, a detailed characterization was necessary of the neutron spectraproduced by thin targets.Neutron time of flight (TOF) methods have beenused to measure the neutron spectra produced on thin targets of low-Z(titanium) and high-Z (tantalum) materials at incident deuteron energiesof 20 MeV and 29 MeV at 0 deg. Breakup neutrons at both energies fromlow-Z targets appear to peak at roughly half of the available kineticenergy, while neutrons from high-Z interactions peak somewhat lower inenergy, owing to the increased proton energy due to breakup within theCoulomb field. Furthermore, neutron spectra appear narrower for high-Ztargets. These centroids are consistent with recent preliminary protonenergy measurements using silicon telescope detectors conducted at LBNL,though there is a notable discrepancy with spectral widths

    Similar works