Modeling and the Sputter Deposition of Coatings Onto Spherical Capsules

Abstract

The sputter deposition of coatings onto capsules of polymer and oxide shells as well as solid metal spheres is accomplished using a chambered substrate platform. Oxides and metal coatings are sputter deposited through a screen-aperture array onto a 0.3-1.2 mm diameter, solid spheres and hollow shells. Each shell is contained within its own individual chamber within a larger array. Ultrasonic vibration is the method used to produce a random bounce of each capsule within each chamber, in order to produce a coating with uniform thickness. Characterization of thin aluminum-oxide coated, platinum solid spheres and thicker copper-gold layer coated, hollow capsules (of both glass and polymer) show that uniform coatings can be produced using a screen-aperture chambered, substrate platform. Potential advantages of this approach compared to open-bounce pans include improved sample yield and reduced surface roughness from debris minimization. A process model for the coating growth on the capsules is developed to assess selection of the screen aperture based on the effects of sputter deposition parameters and the coating materials

    Similar works