Strong Exciton-Photon Coupling in a Nanographene Filled Microcavity

Abstract

Dibenzo[hi,st]ovalene (DBOV)-a quasi-zero-dimensional "nanographene"-displays strong, narrow, and well-defined optical-absorption transitions at room temperature. On placing a DBOV-doped polymer film into an optical microcavity, we demonstrate strong coupling of the 0 → 0' electronic transition to a confined cavity mode, with a coupling energy of 126 meV. Photoluminescence measurements indicate that the polariton population is distributed at energies approximately coincident with the emission of the DBOV, indicating a polariton population via an optical pumping mechanism

    Similar works