research

Solar thermal collector yield: experimental validation of calculations based on steady-state and quasi-dynamic test methodologies

Abstract

The characterization of collector efficiency is the fundamental tool for long term calculation of collector yield. It is, thus, one of the most important inputs in software tools aiming the design of solar thermal systems. Presently two test methodologies are available for characterization of the efficiency of glazed collectors: i) steady state test and ii) quasi-dynamic test, methodologies based in different model approaches to a solar collector, providing different collector efficiency curve parameters and, consequently, imposing different power calculation algorithms. Moreover, Horta et al (2008) demonstrated that the use of the collector efficiency curve derived from steady state test method is not enough for a thorough characterization of the long term performance of a collector. The present work takes into account the introduction of the above referred test methodologies in the European Test Standard for Solar Thermal Collectors, and aims at clarifying how each test results should be used in long term thermal performance calculations. The paper presents a synthesis of the different efficiency parameters provided by each test methodology and corresponding algorithms, applicable in the calculation of delivered power. Application of these algorithms to two days of measured data allows for a comparison of the results obtained with these different methodologies. For validation purposes, results of tests performed on a CPC type collector with a concentration ratio C=1.72 are used. Measurement sequences are used to validate the calculation of power delivered by the collector using both algorithms based on steady-state methodology (with and without correction) and quasi-dynamic methodology

    Similar works