Aging increases upper airway collapsibility in Fischer 344 rats

Abstract

The upper airway muscles play an important role in maintaining upper airway collapsibility, and the incidence of sleep-disordered breathing increases with age. We hypothesize that the increase in airway collapsibility with increasing age can be linked to changes in upper airway muscle mechanics and structure. Eight young (Y: 6 mo) and eight old (O: 30 mo) Fischer 344 rats were anesthetized and mechanically ventilated, and the pharyngeal pressure associated with flow limitation (Pcrit) was measured 1) with the hypoglossal (cnXII) nerve intact, 2) following bilateral cnXII denervation, and 3) during cnXII stimulation. With the cnXII intact, the upper airways of older rats were more collapsible compared with their younger counterparts [Pcrit = −7.1 ± 0.6 (SE) vs. −9.5 ± 0.7 cmH2O, respectively; P = 0.033]. CnXII denervation resulted in an increase in Pcrit such that Pcrit became similar in both groups (O: −4.2 ± 0.5 cmH2O; Y: −5.4 ± 0.5 cmH2O). In all rats, cnXII stimulation decreased Pcrit (less collapsible) in both groups (O: −11.3 ± 1.0 cmH2O; Y: −10.2 ± 1.0 cmH2O). The myosin heavy chain composition of the genioglossus muscle demonstrated a decrease in the percentage of the IIb isoform (38.3 ± 2.5 vs. 21.7 ± 1.7%; P < 0.001); in contrast, the sternohyoid muscle demonstrated an increase in the percentage of the IIb isoform (72.2 ± 2.5 vs. 58.4 ± 2.3%; P = 0.001) with age. We conclude that the upper airway becomes more collapsible with age and that the increase in upper airway collapsibility with age is likely related to altered neural control rather than to primary alterations in upper airway muscle structure and function

    Similar works

    Full text

    thumbnail-image

    Available Versions