Decrease in excitatory neurons, astrocytes and proliferating progenitors in the cerebral cortex of mice lacking exon 3 from the Fgf2 gene

Abstract

<p>Abstract</p> <p>Background</p> <p>The <it>Fgf2 </it>gene is expressed in the brain neuroepithelium during embryonic development and in astroglial cells throughout life. Previous knockout studies suggested that FGF2 plays a role in the proliferation of neural progenitors in the embryonic cerebral cortex. These studies exclusively used knockout alleles lacking the <it>Fgf2 </it>exon 1. However, the description of putative alternative exons located downstream from the canonical exon 1 raised the possibility that alternatively spliced transcripts may compensate for the lack of the canonical exon 1 in the <it>Fgf2 </it>-/- mice.</p> <p>Results</p> <p>We generated and characterized a new line of Fgf2 knockout mice lacking the expression of exon 3, which is conserved in all <it>Fgf2 </it>transcripts and contains essential heparin and receptor binding interfaces. The expression of <it>Fgf2 </it>exon 3 was prevented by inserting a transcriptional STOP cassette in the <it>Fgf2 </it>genomic locus. These mice demonstrate a phenotype in the adult neocortex characterized by decreased density and number of cortical excitatory neurons and astrocytes, which is virtually identical to that of the <it>Fgf2 </it>-/- mice lacking exon 1. In addition, we also show that the <it>Fgf2 </it>exon 3 knockout mice have decreased proliferation of precursors in the adult cerebral cortex, which had not been previously investigated in the other mutant lines.</p> <p>Conclusion</p> <p>The results demonstrate that the phenotype of two completely different <it>Fgf2 </it>KO mouse lines, lacking exon 1 or exon 3, is remarkably similar. The combined results from these KO models clearly indicate that FGF2 plays a role in cortical cell genesis during embryonic development as well as in adulthood. Thus, FGF2 may be required for the maintenance of the pool of adult cortical progenitor cells.</p

    Similar works