CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Techno-economic impacts of automatic undervoltage load shedding under emergency
Authors
E Bompard
E Bompard
+6 more
A Estebsari
A Estebsari
T Huang
T Huang
E Pons
E Pons
Publication date
1 January 2016
Publisher
'Elsevier BV'
Doi
Cite
Abstract
© 2015 Elsevier B.V. All rights reserved. Different schemes for voltage control under emergency are adopted in different jurisdictions around the world. While some features, such as Automatic Voltage Regulation (AVR), are common in all countries, for what concerns undervoltage load shedding (UVLS), to contrast voltage instability or collapse, different schemes are adopted. Most US transmission system operators (TSOs) adopt automatic UVLS schemes, with different capabilities and settings while TSOs in EU usually do not implement automatic UVLS but leave the decisions to the control room operators. The two options may lead to different impacts in terms of trajectory and final status of the transmission grid under emergency, with different unserved energy. In this paper we analyze the impacts from a technical and economic perspective, modeling the grid behavior with different UVLS schemes (none, manual and automatic). The comparison between the different schemes is done resorting to the Incident Response System (IRS), a software tool developed by the authors in the EU-FP7 SESAME project. An illustrative example to a realistic test case is presented and discussed. This paper shows that automatic UVLS is superior to Manual UVLS, from both technical and economic point of view, due to the fast evolution of voltage collapse phenomena and insufficient time for system operators' manual reaction. The benefits of the scheme involving the automatic UVLS can be then compared with the investment costs of equipping the network with those devices
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
LSBU Research Open
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:openresearch.lsbu.ac.uk:89...
Last time updated on 23/05/2020