research

A microfluidics tool for high-throughput, real-time multimodal imaging of nanoparticle-cell interactions

Abstract

The increasing use of nanomaterials for biomedical applications has raised the need for efficient, robust and low-cost high-throughput assessment of nanotoxicity and cell-nanoparticle interactions. Microfluidics provides the tools for high-throughput single-cell functional monitoring, while gold nanorods have unique potential for intracellular tracking and can simultaneously be used as drug carriers. Presented here is a miniaturised platform that integrates these features with a multimodal approach to cell imaging. A microfluidic device allows for trapping of an array of singlecells, followed by the controlled delivery of nanoparticles into the cell array and subsequent real-time multimodal imaging of cellular interactions with functionalised nanoparticles. This system has been successfully used to assess cellnanoparticle interactions at the single-cell level

    Similar works