research

Reliable H∞ control for discrete-time piecewise linear systems with infinite distributed delays

Abstract

In this paper, the reliable H∞ control problem is investigated for discrete-time piecewise linear systems with time delays and actuator failures. The time delays are assumed to be infinitely distributed in the discrete-time domain, and the possible failure of each actuator is described by a variable varying in a given interval. The aim of the addressed reliable H∞ control problem is to design a controller such that, for the admissible infinite distributed delays and possible actuator failures, the closed-loop system is exponentially stable with a given disturbance attenuation level γ. The controller gain is characterized in terms of the solution to a linear matrix inequality that can be easily solved by using standard software packages. A simulation example is exploited in order to illustrate the effectiveness of the proposed design procedures

    Similar works