Rapid Brain Cooling in Intubated Pigs through Nasal Flushing with Oxygen: Prevention of Brain Hyperthermia

Abstract

Local cooling of the brain by the respiratory air is found in many animal species. The mechanism is based on cooling of the nasal vein blood and heat transfer in the cavernous sinus/carotid artery complex and is therefore not active in anaesthetised, intubated animals. The present experiment was made to investigate the effects of oxygen flushing of the nasal cavities in such animals. Nine anaesthetised, intubated male pigs were used. The temperatures in the third ventricle and rectum were measured continuously. Oxygen was infused into the nasal cavities during 10 min periods interrupted by 10 min without flow. The nasal oxygen flow constantly induced a rapid, reversible and flow dependant decrease in brain temperature: 0.25°C ± 0.04, (n = 2) (mean ± SD, n) at <4 l/min; 1.35°C ± 0.78, (n = 20) at 4–6 l/min; and 1.44°C ± 0.62, (n = 6) at >6 l/min. The ventricle temperature decreased 0.59°C ± 0.23, (n = 8) when the animals were transferred to spontaneous respiration and the tracheal tube removed. It may be possible to protect the brain in intubated animals and humans from heat-induced damages by establishment of nasal flushing

    Similar works