Protein Kinase C–Dependent Mobilization of the α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions Drive the Chemotactic Migration of Carcinoma Cells

Abstract

We explored the hypothesis that the chemotactic migration of carcinoma cells that assemble hemidesmosomes involves the activation of a signaling pathway that releases the α6β4 integrin from these stable adhesion complexes and promotes its association with F-actin in cell protrusions enabling it to function in migration. Squamous carcinoma-derived A431 cells were used because they express α6β4 and migrate in response to EGF stimulation. Using function-blocking antibodies, we show that the α6β4 integrin participates in EGF-stimulated chemotaxis and is required for lamellae formation on laminin-1. At concentrations of EGF that stimulate A431 chemotaxis (∼1 ng/ml), the α6β4 integrin is mobilized from hemidesmosomes as evidenced by indirect immunofluorescence microscopy using mAbs specific for this integrin and hemidesmosomal components and its loss from a cytokeratin fraction obtained by detergent extraction. EGF stimulation also increased the formation of lamellipodia and membrane ruffles that contained α6β4 in association with F-actin. Importantly, we demonstrate that this mobilization of α6β4 from hemidesmosomes and its redistribution to cell protrusions occurs by a mechanism that involves activation of protein kinase C-α and that it is associated with the phosphorylation of the β4 integrin subunit on serine residues. Thus, the chemotactic migration of A431 cells on laminin-1 requires not only the formation of F-actin–rich cell protrusions that mediate α6β4-dependent cell movement but also the disruption of α6β4-containing hemidesmosomes by protein kinase C

    Similar works