Polarization imaging reflectometry in the wild

Abstract

We present a novel approach for on-site acquisition of surface reflectance for planar, spatially varying, isotropic samples in uncontrolled outdoor environments. Our method exploits the naturally occurring linear polarization of incident and reflected illumination for this purpose. By rotating a linear polarizing filter in front of a camera at three different orientations, we measure the polarization reflected off the sample and combine this information with multi-view analysis and inverse rendering in order to recover per-pixel, high resolution reflectance and surface normal maps. Specifically, we employ polarization imaging from two near orthogonal views close to the Brewster angle of incidence in order to maximize polarization cues for surface reflectance estimation. To the best of our knowledge, our method is the first to successfully extract a complete set of reflectance parameters with passive capture in completely uncontrolled outdoor settings. To this end, we analyze our approach under the general, but previously unstudied, case of incident partial linear polarization (due to the sky) in order to identify the strengths and weaknesses of the method under various outdoor conditions. We provide practical guidelines for on-site acquisition based on our analysis, and demonstrate high quality results with an entry level DSLR as well as a mobile phone

    Similar works