research

Transparent In-Circuit Assertions for FPGAs

Abstract

Commonly used in software design, assertions are statements placed into a design to ensure that its behaviour matches that expected by a designer. Although assertions apply equally to hardware design, they are typically supported only for logic simulation, and discarded prior to physical implementation. We propose a new HDL-agnostic language for describing latency-insensitive assertions and novel methods to add such assertions transparently to an already placed-and-routed circuit without affecting the existing design. We also describe how this language and associated methods can be used to implement semi-transparent exception handling. The key to our work is that by treating hardware assertions and exceptions as being oblivious or less sensitive to latency, assertion logic need only use spare FPGA resources. We use network-flow techniques to route necessary signals to assertions via spare flip-flops, eliminating any performance degradation, even on large designs (92% of slices in one test). Experimental evaluation shows zero impact on critical-path delay, even on large benchmarks operating above 200MHz, at the cost of a small power penalty

    Similar works