Methods for risk and resilience evaluation in interdependent infrastructure networks

Abstract

Urban infrastructure plays a key role in the structure and dynamics of every city. Besides ensuring the sustainability of communities and businesses, high-quality infrastructure services are crucial for generating jobs and attracting capital investments. Modern infrastructure systems are highly interconnected to enhance efficiency and safety of operations; however, the interconnections increase the risks of cascading failures during extreme events, such as natural disasters, acts of terrorism, and pandemics. Not only are the normal operations interrupted during such events, but prolonged operational disruptions in infrastructure services also have debilitating effects on emergency response and economic recovery in affected regions. With the emergence of new threats and intensifying climate change, the resilience of infrastructure systems has become a necessity rather than a choice for our cities. As with any resource allocation problem, potential resilience investments require identifying priorities and evaluating project alternatives. Appropriate resilience indicators can be used to rank and prioritize infrastructure components and systems as well as to evaluate the efficacy of resilience interventions. The dissertation proposes five indicator-based methodological frameworks to assist decision-makers in analyzing the intrinsic risks and resilience in large-scale interdependent infrastructure networks. For generic interdependent networks, an agent-based simulation approach is adopted. In this approach, the interdependent network is modeled as a weighted bi-directed network where nodes represent infrastructure components and links denote the interconnections. For evaluating the risks of cascading failures and the network's resilience, a hybrid risk measure based on the well-known Inoperability Input-Output Model (IIM) using expert judgments is developed. In the process, to handle the issue of epistemic uncertainty associated with subjective infrastructure dependency data, a method based on possibility theory is also proposed. Later, the hybrid risk measure is extended to develop two resilience indexes for quantifying the criticality and susceptibility of infrastructure components and ranking algorithms are presented. In addition, the hybrid risk measure is combined with socio-economic characteristics obtained from census data to develop a priority index to quantify the risks of cascading failures in various urban communities. With regard to infrastructure-specific networks, the dissertation developed infrastructure ranking and prioritization methods for two distinct transportation systems, specifically road networks, and marine port systems, based on empirical disaster data. For characterizing the resilience of road networks, the dissertation proposed three indicators based on the concepts of resilience triangle and extreme travel time observations. The dissertation combined time series decomposition techniques with anomaly detection algorithms to segregate disaster effects from normal traffic patterns. For characterizing the risks of natural hazards to port systems, the dissertation employed disaster impact data along with international trade data and identified the ports with the highest risks.Civil, Architectural, and Environmental Engineerin

    Similar works