research

A Concurrent Operational Semantics for Constraint Functional Logic Programming

Abstract

In this paper we describe a sound and complete concurrent operational semantics for constraint functional logic programming languages which allows to model declarative applications in which the interaction between demand-driven narrowing and constraint solving helps to prune the search space, leading to shorter goal derivations. We encode concurrency into the generic CFLP(D) scheme, a uniform foundation for the operational semantics of constraint functional logic programming systems parameterized by a constraint solver over the given domain D. In this concurrent version of the CFLP(D) scheme, goal solving processes can be executed concurrently and cooperate together to perform their specific tasks via demand-driven narrowing and declarative residuation guided by constrained definitional trees, constraint solving, and communication by synchronization on logical variables

    Similar works