Geometric Algebra (GA), a generalization of quaternions and complex numbers, is a very
powerful framework for intuitively expressing and manipulating the complex
geometric relationships common to engineering problems.
However, actual processing of GA expressions is very compute intensive, and
acceleration is generally required for practical use. GPUs and FPGAs offer
such acceleration, while requiring only low-power per operation.
In this paper, we present key components of a proof-of-concept compile flow
combining symbolic and hardware optimization techniques to
automatically generate hardware accelerators from the abstract GA descriptions that are suitable for high-performance embedded computing